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The s t r u c t u r e  of the s ingular  s t r e a m l i n e s ,  s t a r t ing  and t e rmina t ing  on the drop  su r f ace s  [1-3], p lays  a 
subs tant ia l  pa r t  in p r o b l e m s  on the convect ive  diffusion in a s y s t e m  of reac t ing  drops  (bubbles) at high P~clet  
number s .  It  h e r e  tu rns  out that  chains  of  drops  ex i s t  in the flow, in which the in terna l  m a s s  t r a n s f e r  is 
f rozen  s t rong ly  by  the in te rac t ion  between the diffusion t r a c k s  and the boundary l a y e r s  of the drops  belonging 
to the chain.  

1. Let  us examine  the p r o c e s s  of convect ive  diffusion in a concent ra ted  s y s t e m  of sphe r i ca l  drops  being 
p rec ip i t a t ed  or  of  bubbles  being splashed,  of rad ius  a which move in an infinite volume of a fixed fluid. Let  
us cons ide r  the flow around an individual pa r t i c l e  of the s y s t e m  to be l amina r ,  and the ve loc i ty  U of the  m o -  
t ion of a l l  the drops  (bubbles) to be identical .  During t he i r  motion let  the drops  f o r m  rec t i l i nea r  chains ,  
where  the spacing between the d rops  in each  chain is constant  and equal  to b, and the spacing between ad-  
j acen t  chains is the s a m e  in o rde r  of magnitude as  the spacing between p a r t i c l e s  in one chain. 

The si tuation desc r ibed  is r ea l i zed  in p r ac t i c e  in the accompl i shmen t  of ex t rac t ion  and bubbling p r o c -  
e s s e s ,  for  example .  In the f i r s t  e a s e  the a s sumpt ions  made  can be cons idered  val id when drop inse r t ion  in 
the  ex t rac t ion  column is accompl i shed  at the s a m e  points at equal  t i m e  in te rva l s ,  and in the second, for  a 
constant  d i scharge  of the bubbling gas ,  which p e r m i t s  an approx imate  cons idera t ion  of the s ize  of the bubbles 
being fo rmed  and the d is tance  between t h e m  to be ident ical  in each chain. The model  to be e x a m i n e d b e l o w  
can  be cons ide red  a rough ma thema t i ca l  model  of m a s s  t r a n s f e r  in ex t rac t ion  and bubbling p r o c e s s e s .  

The s t r e a m  function n e a r  the drop (bubble) su r face  can be r e p r e s e n t e d  in the f o r m  

tp = UBo~(n)a(r - -  a) sin 2 O, 

in a sphe r i ca l  coordinate  s y s t e m  coupled to the cen te r  of an a r b i t r a r y  drop,  where  n is the number  of drops  
(bubbles) pe r  unit vo lume.  The specif ic  exp res s ion  for  Bu(n) can be de te rmined  within the f r a m e w o r k  of the 
ce l lu la r  model ,  for  instance (see [4] for  s m a l l  Reynolds numbers )  or  by using the p o i n t - f o r c e s  model  [5]. In 
pa r t i cu l a r ,  we have for  a / b  << 1 

B~ = (1/2)(,~ + 1) -~, B2 = 3/2, 

where  B 1 and B 2 c o r r e s p o n d  to the Stokes mode of flow around the drops  (the Reynolds number  is Re = 
a U / v  << 1, where  v is the k inemat ic  v i s cos i t y  of the surrounding fluid) and to potent ia l  flow (Re >> 1), r e -  
spect ively ,  and fl is the r a t io  between the v i s cos i t i e s  of the  drop and of the fluid surrounding it. 

The convect ive  diffusion p r o c e s s  can be cons idered  quas i s t a t iona ry  in a coordinate  s y s t e m  coupled to 
a moving s y s t e m  of drops  (bubbles).  This  l as t  a ssumpt ion  is sa t i s f ied  approx ima te ly  if the change in r eagen t  
concentra t ion  w i t h i n t h e  drop can be neglected,  as is val id ,  e .g. ,  during a rapid  chemica l  reac t ion  in the drops  
or  for  high reagent  concent ra t ions  within the drop (bubble). Let  us cons ider  the Pee le t  number  of an individ- 
ual  drop to be P e  = a U / D  >> 1 (D is the diffusion coefficient) .  We define the location of a fixed drop in the 
chain by i ts  number  k, where  the number ing  s t a r t s  with the drop  going in advance.  

The concentra t ion  dis t r ibut ion in the flow is de te rmined  by the solution of the s t a t ionary  convect ive  
diffusion equation 

(vv)c = DAc 
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with boundary conditions of constancy of the concentrat ion far f rom the sys t em and constancy of the concen- 
t ra t ion  of the substance dissolved in the flow, on the drop surfaces .  

For  high Pecle t  numbers ,  the main change in concentrat ion will occur  in the thin diffusion boundary 
layer  of each drop in which the tangential  t r ans f e r  of mate r ia l  along the drop surface can be neglected as 
compared  with the radial  t r ans fe r ,  and also in the domain of diffusion t r aces  located in the neighborhood of 
the singular s t reaml ines  s tar t ing and terminat ing on the par t ic le  sur faces .  Hence, the diffusion boundary-  
laye r equation with a leakage condition which depends on the relat ive location of the drop in the chain and is 
given by the concentrat ion distr ibution in the diffusion layer  of a drop located ups t ream [1-3], must be solved 
to determine the concentrat ion near  a fixed drop. 

We cons ider  below that the per iod of the chain sat isf ies the condition b / a  << Pe I/2. Hence, the leakage 
condition for the k- th  sphere  of the chain is determined by the concentrat ion distribution in the convective 
boundary- layer  region of the diffusion t r ace  of the preceding (k - 1)-th drop. 

The convective boundary layer  region is charac te r i zed  by the fact that  the concentrat ion therein  remains  
constant  on the s t reaml ines  and is determined by the concentrat ion at the output f rom the diffusion boundary 
layer .  This pe rmi t s  reduct ion of the initial problem to a problem of mass  t r ans f e r  of chains of drops and 
utilization of resu l t s  [1-3] which resul t  in express ions  for the total diffusion fluxes on the drop surface under 
the assumption that the undepleted solution has a concentrat ion c: 

l h  = I1[k 1/~ - -  (k - -  i)1/2], 

I1  = ~'a~-V2-1/~--l/~o ~t D a (n!" ~ a a ' 2 U 1 / 2 D i / ~ c .  (1.1) 

The concentrat ion is here  measured  f rom its value on the drop surface.  

Taking account of (1.1), we obtain for  the mean diffusion flux on the drop 

h 

<!> = }:-J ~ Ii = I l k - v ~  (1.2) 
~=1 

We now consider  the number  of drops in the sys t em to be large,  i.e., k - -  ~, and we determine the 
distr ibution of the mean concentrat ion (the concentrat ion outside the diffusion t r ace s  and boundary layers  is 
la ter  called the concentra t ion in the core  of the flow) along the s t r eam axis. 

Since the concentrat ion in the core  of the flow will va ry  slowly in spacings on the o rde r  of the period of 
the chain, a representa t ive  volume which substantial ly changes the scale in the var ia t ion of the concentrat ion 
but contains a large volume of drops can be introduced. 

Let us introduce the slow coordinate x measured  along the flow. At the centers  of the d r o p s  (bubbles) 
it takes on the value 

z = x (k )  = kb .  ( 1 . 3 )  

Taking account of (1.3) and the equation for the concentrat ion in the core  of the flow (c o is the tmde- 
pleted concentrat ion at the entrance to the layer  of drops),  

--U,)c/Ox = n</>, x = 0, c ~ c0, (1.4) 

we obtain f rom (1.2) the distr ibution of the mean concentrat ion along the flow 

c = co exp {--2~U-Ix' /2},  

(~ = 233"v2~i/Cnbl/2B~/~ (n) a~/:U1/2D I/~- c. (1.5) 

Let us note that the concentrat ion distr ibution obtained is applicable for both large and smal l  Reynolds 
numbers  of the laminar  s t reaml ine  of an individual drop (bubble). 

The resul t s  obtained pe rmi t  determinat ion of the t ime dependence of the mean reagent concentrat ion in 
the continuous phase at any point of a r eac to r  z (here z is the spacing f rom the entrance to  the r eac to r  (see 
Fig. 1), under the assumptions  made, in the fo rm 

c = co exp {--2(~U-'(Ut --  z)l/2}. 
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Fig. 1 

It is seen f rom (1.5) that at spacings on the o rde r  of the latt ice period,  the concentrat ion in the core  of 
the flow does not v a r y  In prac t ice :  c(x + b) ~ c(x). This p rope r ty  is des t royed nea r  the point x = 0 since 
l ira a c / a z  = oo, and this is natural  because it was assumed In the introduction of the slow coordinate x (1.3) 
==-~0 

that the number  of drops per  unit volume is large (k -~ =~), and this,  in turn governs the boundary of appli- 
cabil i ty of the formulas  obtained In the coordinate x in the fo rm of the inequality x >> b (see (1.3)). 

2. Using the resu l t s  of Seo. 1, we consider  the p rob lem of mass  t r ans fe r  between a moving ordered  
sy s t em of drops (bubbles) and a fixed fluid within the f ramework  of the following, most  s imple model of two 
mutually penetrat ing continuous media between which mass  t r ans fe r  of continuous and d iscre te  phases occurs .  

We cons ider  the d iscre te  phase to move upward at a constant veloci ty U and at a distance x f rom its 
upper boundary to have a concentrat ion c+(x, t) at the t ime t, while the continuous phase is fixed and has the 
concentra t ion c(x, t) (see Fig. 1). 

The mass  conservat ion law for each phase has the following form in a coordinate sys tem coupled to the 
d i scre te  phase 

Oc+/Ot = - - d c / d t  = J ( t ,  z ,  c - -  c+), (2.1) 

where d /dt  = a/0t  + Ua/~)x is the total  derivat ive and J is the mean quantity of react ing mater ia l  pe r  unit 
volume per  unit t ime.  

A specific express ion can be obtained for J by using (1.2)-(1.4) for the mean diffusion flux on a drop 
pe r  unit volume and by taking Into account that the corresponding quantities were measured  f rom the appro-  
pr ia te  value of the concentra t ion in the d i sc re te  phase 

Y = n ( [ )  = ax-lZ=(c --  c+). (2.2) 

The boundary condit ions of nondeplet ion of the concentrat ion in the continuous phase on the outer  bound- 
a ry  of the region for  x = 0, and zero  d iscre te  phase concentrat ion at the entrance to the reac to r  for x = Ut 
must  be added to the sys t em of equations (2.1) and (2.2). 

Sys tem (2.1) and (2.2) becomes  in the var iables  z = U t  - x, x 

Ll (c ,  c+) = U & / O z  -t- o=- I /2 (c  - -  c+) = O, 

~ ( c ,  c+) = UOc+/c~z - -  ~x-=/t(c - -  c+) = 0, (2.3) 

z = O, c = Co, z = O, c+ = 0 .  

System (2.3) is l i nea r  and has a s ingu la r i t y  at x = 0, comple te ly  analogous to that mentioned in Sec. 1. 
Without pe r fo rm ing  an exact Invest igat ion of  the solut ion of system (2.3), which can be obtained by apply ing 
the Laplace t r a n s f o r m  in the coord inate z, let us just  indicate its approx imate express ion for  large values 
of x.  Th is  case corresponds to a concentrat ion d is t r ibu t ion  in the phases at a f ixed distance z -< h = const 
f rom the entrance to the r eac to r  for  large t ime t (see Fig. 1). The appropria te  express ions  for the concen-  
t ra t ion  have the following fo rm in the t, z var iab les  (t --~ =o) 

c(t ,  z )  = co e x p  { - - 2 o U - z ( U t  - -  z)l/=}, 
c+(t, z) = c(t, z)(t - -  exp { - - o U - l z ( U t  - -  z)-t/~}). (2.4) 
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F o r  any t and z, exp re s s ions  (2.4) s a t i s fy the  las t  equation of (2.3) and a l l  the boundary conditions 
exact ly ,  while the f i r s t  equation of (2.3) is sa t i s f ied  approx ima te ly  s ince as t -  ~ and z -< h 

Ll(cl, c~) ~ c o a ( U t  - -  h ) - l / ~  exp { - - 2 o U - l ( U t  - -  h) l /~} + O. 

It  is seen f r o m  (2.4) that  the reagent  concentra t ions  in the phases  nea r  the r e a c t o r  en t rance  equalize 
with the lapse  of t ime ,  reaching  the value e ~ c ~ 0. + 

Let  us note that  the approx imate  expres s ion  for  the concentra t ion c(x, t) in the continuous phase  (2.4) 
yie lds  the exact  value at  the r e a c t o r  en t rance  for  z = 0. This  is p roved  by d i rec t  in tegrat ion of the f i r s t  
equation in (2.3) for  z = 0 with the equal i ty c+(t, 0) = 0 taken into account.  
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Since the f i r s t  d i s c o v e r y  of l a s e r  cavi ta t ion in liquids [1] a l a rge  number  of s tudies  of th is  phen-  
omenon have appeared .  The p r o b l e m  is of i n t e re s t  because  this  is  in p r ac t i ce  the only way of :producing 
an isola ted cavi ta t ion  bubble within a liquid (with e l e c t r i c a l  d i scharges  dis tor t ions  a r e  produced by the p r e s -  
ence of the e lec t rodes)  and a lso  because  of the uncer ta in ty  surrounding the s ta te  of the ma t e r i a l  r ea l i zed  when 
such a cavi ty  co l l apses .  Studies have been made of the dynamics  of bubbles fo rmed by l a s e r  breakdown in a 
liquid using a technique based  on record ing  of acous t ica l  and light impulses  produced during bubble format ion  
and co l lapse  [1], with h igh-speed  photography [2], and by the shadow method with background i l lumination by 
a gas l a s e r  [3]. 

The goal of the p r e s e n t  s tudy is to inves t igate  the l a se r  cavi ta t ion in a m o s t - s i m p l e  cryogenic  liquid - 
liquid ni t rogen.  Due to the c loseness  of the liquid ni t rogen t e m p e r a t u r e  to the boiling point, the p r e s s u r e  
within the cavi ta t ion cavi ty  at the l a t t e r ' s  m a x i m u m  dimensions ,  de te rmined  bas ica l ly  by the sa tu ra ted  ni-  
t rogen  vapor  p r e s s u r e ,  will differ  only insignif icant ly f r o m  the ex te rna l  p r e s s u r e  and the degree  of bubble 
c o m p r e s s i o n  R / r  will  be smal l  (here R is the maximum;  r ,  the min imum bubble radius ,  respec t ive ly) .  

The t e m p e r a t u r e  T within the bubble at m a x i m u m  bubble c o m p r e s s i o n  can be wri t ten in the adiabat ic  
approx imat ion  as 

T = To(R/r)3~v-1), 
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